If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+28x-320=0
a = 4; b = 28; c = -320;
Δ = b2-4ac
Δ = 282-4·4·(-320)
Δ = 5904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5904}=\sqrt{144*41}=\sqrt{144}*\sqrt{41}=12\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-12\sqrt{41}}{2*4}=\frac{-28-12\sqrt{41}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+12\sqrt{41}}{2*4}=\frac{-28+12\sqrt{41}}{8} $
| (2x+25)+(3x-5)=360 | | 7x+3=12x+2 | | 3(x+12)=2(-x+3) | | 13=5s2 | | 10x+5=16x+3 | | 190/45=2x+4x | | 45/4x+2x=190 | | 2x+4x/45=140 | | 15w^2+6w=0 | | x+2x/45=140 | | 14p=-2 | | 16=8/2x | | 5x-18=3x+425x-18=3x+42 | | 7b−2/5=6b−7/5 | | 7b−2/6=6b−7/5 | | x+x-2000+(2x-2000)-2000+(2x-4000)-2000=5000 | | d+18=8–9d | | .60x+.40(100-x)=1.2 | | y^2-4×+6y+13=0 | | 6¹×3+b=48 | | 10-4(2x-1=-2(3-x) | | 8x+7x=160 | | -2(w+8)=8w+8 | | 56/(-7)-1=x | | 5w-32=2(w-7) | | x=9+9 | | x+13x+82=180 | | 19=3p | | 10/16-x=20/16+x | | 4y+y=42 | | 6a+7=4a+ | | (x/((0.3x)(0.4x))=6.32 |